DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO Booklet Sr. No. 111220 TBC: 11/18/SET Roll No.

PHYSICAL SCIENCES

PAPER II

Time Allowed: 2 Hours] [Maximum Marks: 200

Instruction for the Candidates

1. Write your Roll Number in the space provided on the top of this page. Do not write anything else on the Test Booklet except in the space provided for rough work.

This paper consists of one hundred (100) multiple-choice type of questions. All questions carry equal marks.

At the commencement of the examination, the question booklet will be given to you. In the first 5 minutes, you are requested to open the booklet and compulsorily examine it as below:

To have access to the Question Booklet, tear off the paper seal on the edge of this cover page. Do not accept a booklet without sticker-seal and do not accept an open booklet.

Tally the number of pages and number of questions in the booklet with the (ii)information printed on the cover page. Faulty booklets due to pages/questions missing or duplicate or not in serial order or any other discrepancy should be got replaced immediately by a correct booklet from the invigilator within the period of 5 minutes. Afterwards, neither the Question Booklet will be replaced nor any extra time will be given.

Each item has four alternatives response marked (A), (B), (C) and (D). You have to darken the 4. circle as indicated below for the correct response against each item completely with Blue/Black ball point pen as shown below. H.B. Pencil should not be used in blackening the circle to indicate responses on the answer sheet.

(C) (D) Example: Where (B) is correct response.

Your responses to the each item are to be indicated in the OMR Sheet provided to you only. If you 5. mark your response at any place other than in the circle in the OMR Sheet, it will not be evaluated.

6. Read instructions given inside carefully.

7. Rough work is to be done in the end of this booklet.

8. If you write your Name, Roll Number, Phone Number or put any mark on any part of the OMR Sheet, except for the space allotted for the relevant entries, which may disclose your identity, or use abusive language or employ any other unfair means, such as change of response by scratching or using white fluid, you will render yourself liable to disqualification.

You have to return the original OMR Sheet to the invigilators at the end of the examination 9. compulsorily and must not carry it with you outside the Examination Hall. You are however, allowed to carry original question booklet and duplicate copy of OMR Sheet on conclusion of

10. Use of any calculator or log table etc., is prohibited.

11. There are no negative marks for incorrect answers.

- 12. In case of any discrepancy found in the English and Hindi Versions, the English Version will be treated as final.
- CARRYING AND USE OF ELECTRONICS/COMMUNICATION DEVICES IN 13. EXAMINATION HALL IS NOT ALLOWED.

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO 1

PHYSICAL SCIENCES

Paper II

Time Allowed: 2 Hours]

[Maximum Marks: 200

Note:— This paper consists of **one hundred** (100) multiple choice questions. Each question carries **two** (2) marks. Attempt all questions.

- 1. Which of the following quantities has the dimension of length (where G is the gravitational constant, M is mass of a star, and c is the velocity of light)?
 - (A) GM/c

(B) GM/c^2

(C) GM^2/c

- (D) $\frac{\text{GM}^2}{c^2}$
- 2. Which one of the following is correct?
 - (A) $\overrightarrow{A} \times (\overrightarrow{D} \times (\overrightarrow{C} \times \overrightarrow{D})) = \overrightarrow{B} (\overrightarrow{A} \cdot \overrightarrow{C} \times \overrightarrow{D}) + (\overrightarrow{A} \cdot \overrightarrow{B}) (\overrightarrow{C} \times \overrightarrow{D})$
 - (B) $\vec{A} \times (\vec{B} \times (\vec{C} \times \vec{D})) = \vec{B} (\vec{A} \cdot \vec{C} \times \vec{D}) (\vec{A} \cdot \vec{B}) (\vec{C} \times \vec{D})$
 - (C) $\vec{A} \times (\vec{B} \times (\vec{C} \times \vec{D})) = -\vec{B} (\vec{A} \cdot \vec{C} \times \vec{D}) + (\vec{A} \cdot \vec{B}) (\vec{C} \times \vec{D})$
 - (D) $\vec{A} \times (\vec{B} \times (\vec{C} \times \vec{D})) = -\vec{B} (\vec{A} \cdot \vec{C} \times \vec{D}) (\vec{A} \cdot \vec{B}) (\vec{C} \times \vec{D})$
- 3. A battery with a constant emf E_0 , an inductor L, and a resistance R are connected in series. Which of the following expressions can describe the current I(t) as the function of time t if no current flows at time t = 0?
 - (A) $I(t) = \frac{E_0}{R} (1 e^{-(R/L)t})$
- (B) $I(t) = \frac{E_0}{R} (1 + e^{-(R/L)t})$
- (C) $I(t) = \frac{E_0}{R} (1 e^{(R/L)t})$
- (D) $I(t) = \frac{E_0}{R} (1 + e^{(R/L)t})$

फिजीकल साइंस

प्रश्न-पत्र II

समय : 2 घण्टे]

[पूर्णांक : 200

नोट : इस प्रश्न-पत्र में सौ (100) बहुविकल्पीय प्रश्न हैं। प्रत्येक प्रश्न दो (2) अंक का है। सभी प्रश्नों के उत्तर दीजिये।

- 1. निम्नलिखित में से कौनसे परिमाणों की लम्बाई के आयाम हैं (जहाँ G गुरुत्वीय स्थिरांक है; M एक तारे का द्रव्यमान है; और c प्रकाश का वेग है ?
 - (A) GM/c

(B) GM/c^2

(C) GM^2/c

- (D) $\frac{\text{GM}^2}{c^2}$
- 2. निम्नलिखित में से कौनसा एक सही है ?
 - (A) $\overrightarrow{A} \times (\overrightarrow{B} \times (\overrightarrow{C} \times \overrightarrow{D})) = \overrightarrow{B} (\overrightarrow{A} \cdot \overrightarrow{C} \times \overrightarrow{D}) + (\overrightarrow{A} \cdot \overrightarrow{B}) (\overrightarrow{C} \times \overrightarrow{D})$
 - (B) $\overrightarrow{A} \times (\overrightarrow{B} \times (\overrightarrow{C} \times \overrightarrow{D})) = \overrightarrow{B} (\overrightarrow{A} \cdot \overrightarrow{C} \times \overrightarrow{D}) (\overrightarrow{A} \cdot \overrightarrow{B}) (\overrightarrow{C} \times \overrightarrow{D})$
 - (C) $\vec{A} \times (\vec{B} \times (\vec{C} \times \vec{D})) = -\vec{B} (\vec{A} \cdot \vec{C} \times \vec{D}) + (\vec{A} \cdot \vec{B}) (\vec{C} \times \vec{D})$
 - (D) $\overrightarrow{A} \times (\overrightarrow{B} \times (\overrightarrow{C} \times \overrightarrow{D})) = -\overrightarrow{B} (\overrightarrow{A} \cdot \overrightarrow{C} \times \overrightarrow{D}) (\overrightarrow{A} \cdot \overrightarrow{B}) (\overrightarrow{C} \times \overrightarrow{D})$
- 3. स्थिर $\operatorname{emf} E_0$ वाली एक बैटरी, एक प्रेरित्र L और एक प्रतिरोध R एक श्रेणीक्रम में जुड़े हैं। निम्निलिखित में से कौनसी अभिव्यक्ति धारा I(t) को समय t के फलन के रूप में निरूपित करती है, यदि समय t=0 पर कोई धारा नहीं बहती ?
 - (A) $I(t) = \frac{E_0}{R} (1 e^{-(R/L)t})$
- (B) $I(t) = \frac{E_0}{R} (1 + e^{-(R/L)t})$
- (C) $I(t) = \frac{E_0}{R} (1 e^{(R/L)t})$
- (D) $I(t) = \frac{E_0}{R} (1 + e^{(R/L)t})$

4. The three solutions of the cubic equation:

$$\begin{vmatrix} x & a & a & 1 \\ a & x & b & 1 \\ a & b & x & 1 \\ a & b & c & 1 \end{vmatrix} = 0$$

are given by:

(A)
$$x = a, x = b, x = c$$

(A)
$$x = a, x = b, x = c$$
 (B) $x = -a, x = b, x = c$

(C)
$$x = a, x = -b, x = a$$

(C)
$$x = a, x = -b, x = c$$
 (D) $x = a, x = b, x = -c$

Which of the following is a valid Fourier series for f(x) = x in the range $-\pi \le x \le \pi$?

(A)
$$f(x) = 2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin(x)$$

(B)
$$f(x) = 2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \cos(x)$$

(C)
$$f(x) = 2\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sin(x)$$

(D)
$$f(x) = 2\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \cos(x)$$

The residues of the function $f(z) = \tan z$ at all its poles are: 6.

(A) 1 for all poles

2 for all poles

(C) -1 for all poles

different for every pole (D)

A matrix 'X', when multiplied with another matrix 'Y', gives the identity 7. matrix I. The matrix Y is:

Inverse of X

Square of X (B)

(C) Identity Matrix

(D)Transpose of X

घन सम्बन्धी समीकरण : 4.

$$\begin{vmatrix} x & a & a & 1 \\ a & x & b & 1 \\ a & b & x & 1 \\ a & b & c & 1 \end{vmatrix} = 0$$

कैसे दी जाती है ?

(A)
$$x = a, x = b, x = a$$

(A)
$$x = a, x = b, x = c$$
 (B) $x = -a, x = b, x = c$

(C)
$$x = a, x = -b, x = c$$

(D)
$$x = a, x = b, x = -c$$

5. परास $-\pi \le x \le \pi$ में f(x) = x के लिए, निम्नलिखित में से कौनसी एक वैध फोरियर शृंखला

(A)
$$f(x) = 2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin(x)$$

(B)
$$f(x) = 2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \cos(x)$$

(C)
$$f(x) = 2\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sin(x)$$

(D)
$$f(x) = 2\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \cos(x)$$

फलन $f(z) = \tan z$ के अवशेष पर इसके सभी ध्रुव कैसे हैं ? 6.

- (A) सभी ध्रुवों के लिए 1
- (B) सभी ध्रुवों के लिए 2
- (C) संभी ध्रुवों के लिए -1
- (D) प्रत्येक ध्रुव के लिए भिन्न

एक मैट्रिक्स 'X' का जब अन्य मैट्रिक्स 'Y' के साथ गुणन किया जाता है, तब यह सरूपता मैट्रिक्स 7. I देता है। Y मैट्रिक्स कैसा है ?

(A) X का प्रतिलोम

(B) X का वर्ग

(C) सरूपता मैट्क्स

(D) X का स्थानान्तर (ट्रांसपोज)

8. Consider the matrix A and the vector V given by :

$$A = \begin{pmatrix} 2 & 3 \\ t & -1 \end{pmatrix}; V = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

Which statement is true?

- (A) V is an eigen vector of A exactly when t = 1
- (B) V is an eigen vector of A exactly when t = 9/4
- (C) V is not an eigen vector of A regardless of the value of t
- (D) V is an eigen vector of A for all values of t
- 9. The value of integral:

$$\int_{0}^{\pi/2} \sin^{m}(x) \cos(x) dx$$

is:

(A) 1/m

(B) -1/m

(C) -1/(m + 1)

(D) 1/(m + 1)

10. The matrix A is defined as:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & -3 \\ 0 & -1 & 2 \\ 0 & 0 & -3 \end{bmatrix}$$

The eigen values of $(A^3 + 2A^2 - 3A + I)$ are:

(A) -1, 5, 1

(B) 1, 5, 1

(C) 0, 1, -1

(D) -1, 1, 1

11. The determinant of the metric tensor corresponding to :

$$ds^{2} = 5(dx^{1})^{2} + 3(dx^{2})^{2} + 4(ds^{3})^{2} - 6dx^{1}dx^{2} + 4dx^{2}dx^{3}$$

is equal to:

(A) 2

(B) $3^{\frac{1}{2}}$

(C) 3

(D) 4

8. मैट्रिक्स A और वेक्टर V पर विचार कीजिए जो :

$$\mathbf{A} = \begin{pmatrix} 2 & 3 \\ t & -1 \end{pmatrix}; \mathbf{V} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

द्वारा दिये गये हैं। कौनसा कथन सत्य है ?

- (A) V, A an y(t) are t 31 t 32 t 31 t 31
- (B) V, A का पूरी तरह से आइगेन वेक्टर है, जब t = 9/4
- (C) V, A का आइगेन वेक्टर नहीं है, जब t के मान पर विचार न किया जाय
- (D) t के सभी मूल्यों के लिए V, A का एक आइगेन वेक्टर है
- 9. इंटीग्रल

$$\int_{0}^{\pi/2} \sin^{m}(x) \cos(x) dx$$

का मान क्या है ?

(A) 1/m

(B) -1/m

(C) -1/(m + 1)

(D) 1/(m + 1)

10. मैट्रिक्स A को :

$$A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & -1 & 2 \\ 0 & 0 & -3 \end{bmatrix}$$

के रूप में परिभाषित किया गया है $(A^3 + 2A^2 - 3A + I)$ की आइगेन वैल्यू कौनसी हैं ?

(A) -1, 5, 1

(B) 1, 5, 1

(C) 0, 1, -1

(D) -1, 1, 1

11. मैट्रिक टेंसर का निर्धारक :

$$ds^{2} = 5(dx^{1})^{2} + 3(dx^{2})^{2} + 4(ds^{3})^{2} - 6dx^{1}dx^{2} + 4dx^{2}dx^{3}$$

के अनुरूप किसके बराबर है ?

(A) 2

(B) 3^{1/2}

(C) 3

(D) 4

12. If a group is defined by a*b=a+b-1, then the inverse of the group is :

(A) a

(B) 2 - a

(C) a^{-1}

(D) a - 3

13. If G is an abelian group and a, b belong to G such that O(a) = 5 and O(b) = 7, then $(ab)^{14}$ is :

(A) a^2

(B) a^{-1}

(C) a

(D) a^3

14. If the equation $x^3 - 3x + k = 0$ has a real root in the interval [-1, 1], then the range of k is:

(A) (1, 3)

(B) (0, 2)

(C) (-2, 0)

(D) (-2, 2)

15. A hot air balloon of mass M is descending vertically with downward acceleration a. How much mass must be thrown out of it to give the balloon an upward acceleration of a? (Assume that upward force on the balloon from the air does not change because of decrease in the mass of the balloon).

(A) $\frac{Ma}{a-g}$

(B) $\frac{Mg}{a+g}$

(C) $\frac{2Ma}{a+g}$

(D) $\frac{2Mg}{a-g}$

16. A particle of mass m_1 is moving along the x-axis with velocity u_1 and another particle of mass m_2 is at rest at the origin. The two particles undergo elastic collision and start moving with velocities v_1 and v_2 . Which one of the following expressions is *correct*?

(A) $\frac{v_1}{v_2} = \frac{m_1 - m_2}{2m_1}$

(B) $\frac{v_1}{v_2} = \frac{m_1 + m_2}{2m_1}$

(C) $\frac{v_1}{v_2} = \frac{m_1 - m_2}{2m_2}$

(D) $\frac{v_1}{v_2} = \frac{m_1 + m_2}{2m_2}$

यदि एक समूह की परिभाषा a*b=a+b-1 द्वारा दी जाती है, तब इस समूह का उल्टा क्या 12. 書? (B) 2 - a(A) a (C) a^{-1} (D) a - 3यदि G एक आबेलियन समूह है और a, b उस G से इस प्रकार सम्बन्धित है कि O(a)=513. और O(b) = 7, तब $(ab)^{14}$ क्या है : (B) a^{-1} (A) a^2 (D) a^3 (C) a यदि समीकरण $x^3-3x+k=0$ का अन्तराल $[-1,\ 1]$ में एक वास्तविक रूट है, तब k का परास 14. क्या है ? (B) (0, 2)(A) (1, 3)(D) (-2, 2)(C) (-2, 0)एक M द्रव्यमान का गर्म हवा का गुब्बारा नीचे की ओर α त्वरण के साथ ऊर्ध्वाधर उतर रहा 15.

है। इस गुब्बारे से कितना द्रव्यमान बाहर निकालना चाहिए कि गुब्बारे को ऊपर की ओर a त्वरण दिया जा सके ? (यह मान लें कि हवा से गुब्बारे पर ऊपर की ओर लगा बल परिवर्तित नहीं होता क्योंकि गुब्बारे का द्रव्यमान घट जाता है)।

(A)
$$\frac{Ma}{a-g}$$

(B)
$$\frac{Mg}{a+g}$$
(D) $\frac{2Mg}{a-g}$

(C)
$$\frac{2Ma}{a+g}$$

(D)
$$\frac{2Mg}{a-g}$$

एक m_1 द्रव्यमान का एक कण x-अक्ष पर u_1 वेग से गित कर रहा है, और दूसरा m_2 द्रव्यमान 16. का कण उत्पत्ति स्थान पर विश्राम अवस्था में है। दोनों कण मामूली टक्कर करते हैं और v_1 और v_2 के वेगों से गति आरम्भ करते हैं। निम्नलिखित में से कौनसी अभिव्यक्ति **सही** है ?

(A)
$$\frac{v_1}{v_2} = \frac{m_1 - m_2}{2m_1}$$

(B)
$$\frac{v_1}{v_2} = \frac{m_1 + m_2}{2m_1}$$

(C)
$$\frac{v_1}{v_2} = \frac{m_1 - m_2}{2m_2}$$

(D)
$$\frac{v_1}{v_2} = \frac{m_1 + m_2}{2m_2}$$

- 17. A muon is travelling at a speed that is three-fifth of the speed of light. By what factor does its average lifetime changes in motion as compared to its average lifetime at rest?
 - (A) It increases by a factor of 5/4
 - (B) It decreases by a factor of 4/5
 - (C) It increases by a factor of $\sqrt{5/2}$
 - (D) It decreases by a factor of 3/4
- 18. A pion at rest decays into a muon and a neutrino. Find the energy of the outgoing muon (E_{μ}) in terms of the mass of the pion (m_{π}) and the mass of the muon (m_{μ}) .

(A)
$$E_{\mu} = \frac{(m_{\pi}^2 + m_{\mu}^2)c^2}{m_{\pi}}$$

(B)
$$\mathbf{E}_{\mu} = \frac{(m_{\pi}^2 + m_{\mu}^2)c^2}{2m_{\pi}}$$

(C)
$$E_{\mu} = \frac{(m_{\pi}^2 + m_{\mu}^2)c^2}{m_{\mu}}$$

(D)
$$\mathbf{E}_{\mu} = \frac{(m_{\pi}^2 + m_{\mu}^2)c^2}{2m_{\mu}}$$

19. The three principal moments of inertia for a homogeneous circular cylinder of radius R, height h, and mass m are :

(A)
$$\frac{1}{4}\mu(R^2 - \frac{1}{3}h^2)$$
, $\frac{1}{4}\mu(R^2 - \frac{1}{3}h^2)$ and $\frac{1}{2}\mu R^2$

(B)
$$\frac{1}{4}\mu(R^2 + \frac{1}{3}h^2), \frac{1}{4}\mu(R^2 - \frac{1}{3}h^2)$$
 and $\frac{1}{2}\mu R^2$

(C)
$$\frac{1}{4}\mu(R^2 - \frac{1}{3}h^2)$$
, $\frac{1}{4}\mu(R^2 + \frac{1}{3}h^2)$ and $\frac{1}{2}\mu R^2$

(D)
$$\frac{1}{4}\mu(R^2 + \frac{1}{3}h^2)$$
, $\frac{1}{4}\mu(R^2 + \frac{1}{3}h^2)$ and $\frac{1}{2}\mu R^2$

- 17. एक म्यूऑन (अस्थिर उपपरमाण्विक कण) गित कर रहा है, जिसकी गित प्रकाश की गित का तीन-पाँचवीं है। विराम पर इसके औसत जीवनकाल की तुलना में इसकी गित में कितने गुणक से इसका औसत जीवनकाल परिवर्तित होता है ?
 - (A) यह 5/4 के गुणक से बढ़ता है
 - (B) यह 4/5 के गुणक से घटता है
 - (C) यह $\sqrt{5/2}$ के गुणक से बढ़ता है
 - (D) यह 3/4 के गुणक से घटता है
- 18. विराम पर एक पाइऑन, एक म्यूऑन और एक न्यूट्रिनो में अपघटित होता है। पाइऑन (m_{π}) के द्रव्यमान और म्यूऑन (m_{μ}) के द्रव्यमान के अनुसार म्यूऑन (E_{μ}) की बाहर जाने वाली ऊर्जा ज्ञात कीजिए :

(A)
$$E_{\mu} = \frac{(m_{\pi}^2 + m_{\mu}^2)c^2}{m_{\pi}}$$

(B)
$$E_{\mu} = \frac{(m_{\pi}^2 + m_{\mu}^2)c^2}{2m_{\pi}}$$

(C)
$$E_{\mu} = \frac{(m_{\pi}^2 + m_{\mu}^2)c^2}{m_{\mu}}$$

(D)
$$\mathbf{E}_{\mu} = \frac{(m_{\pi}^2 + m_{\mu}^2)c^2}{2m_{\mu}}$$

19. R त्रिज्य, h ऊँचाई और m द्रव्यमान के एक समरस सिलिंडर के लिए तीन प्रमुख जड़ता प्रवृत्तियाँ कौनसी है ?

(A)
$$\frac{1}{4}\mu(R^2 - \frac{1}{3}h^2), \frac{1}{4}\mu(R^2 - \frac{1}{3}h^2)$$
 and $\frac{1}{2}\mu R^2$

(B)
$$\frac{1}{4}\mu(R^2 + \frac{1}{3}h^2), \frac{1}{4}\mu(R^2 - \frac{1}{3}h^2)$$
 and $\frac{1}{2}\mu R^2$

(C)
$$\frac{1}{4}\mu(R^2 - \frac{1}{3}h^2), \frac{1}{4}\mu(R^2 + \frac{1}{3}h^2)$$
 and $\frac{1}{2}\mu R^2$

(D)
$$\frac{1}{4}\mu(R^2 + \frac{1}{3}h^2)$$
, $\frac{1}{4}\mu(R^2 + \frac{1}{3}h^2)$ and $\frac{1}{2}\mu R^2$

- 20. A planet obeys Kepler's three laws and moves in an elliptical orbit with the semi-major axis (a), the semi-minor axis (b), energy E, and angular momentum L. Which one of the following statements is *correct*?
 - (A) a is independent of E
- (B) a is independent of L
- (C) b is independent of E
- (D) b is independent of L
- 21. The Lagrangian $L(q, \dot{q})$ is not an explicit function of time. Which one of the following quantities will always be conserved?
 - (A) $\dot{q} \frac{\partial \mathbf{L}}{\partial \dot{q}} + \mathbf{L}$

(B) $\dot{q} \frac{\partial L}{\partial \dot{q}} - L$

(C) $\dot{p}\frac{\partial \mathbf{L}}{\partial \dot{p}} + \mathbf{L}$

- (D) $\dot{p} \frac{\partial L}{\partial \dot{p}} L$
- 22. Which of the following canonical transformations is generated by the generating function F = qQ?
 - (A) p = Q, P = q

(B) p = -Q, P = q

(C) p = Q, P = -q

- (D) p = -Q, P = -q
- 23. If \vec{L} is the angular momentum and \hat{n} is a unit vector along any direction, which of the following relations on Poisson brackets is *correct*?
 - (A) $\begin{bmatrix} \overrightarrow{L}, \overrightarrow{L}.\hat{n} \end{bmatrix} = 0$

(B) $\begin{bmatrix} \overrightarrow{L}, \overrightarrow{L} \cdot \hat{n} \end{bmatrix} = \hat{n}$

(C) $\begin{bmatrix} \vec{L}, \vec{L}.\hat{n} \end{bmatrix} = \vec{L}$

- (D) $\left[\overrightarrow{\mathbf{L}}, \overrightarrow{\mathbf{L}}.\hat{n}\right] = \hat{n} \times \overrightarrow{\mathbf{L}}$
- 24. For what value of α and β , the transformation $Q = q^{\alpha} \cos \beta p$ and $P = q^{\alpha} \sin \beta p$ is canonical [q, p] = 1:
 - (A) $\alpha = 1/2$ and $\beta = 2$
- (B) $\alpha = 2$ and $\beta = 1/2$
- (C) $\alpha = 1/2$ and $\beta = 1$
- (D) $\alpha = 1$ and $\beta = 1/2$

T.B.C.: 11/18/SET-II

- 20. एक ग्रह कैपलर के तीन नियमों का पालन करता है और एक दीर्घवृत्ताकार कक्ष में सेमीमेजर अक्ष (a), सेमी माइनर अक्ष (b), ऊर्जा (E) और कोणीय संवेग (L) के साथ गित करता है। निम्निखित में से कौनसा कथन **सही** है ?
 - (A) a, E से स्वतन्त्र है

(B) a, L से स्वतन्त्र है

- (C) b, E से स्वतन्त्र है
- (D) b, L से स्वतन्त्र है
- 21. लैग्रान्जियन $L(q,\dot{q})$, समय का एक स्पष्ट फलन नहीं है। निम्निलिखित में से कौनसी मात्राएँ हमेशा संरक्षित रहेंगी ?
 - $({\rm A}) \quad \dot{q} \, \frac{\partial {\rm L}}{\partial \dot{q}} + {\rm L}$

(B) $\dot{q} \frac{\partial \mathbf{L}}{\partial \dot{q}} - \mathbf{L}^{-\frac{1}{2}}$

(C) $\dot{p} \frac{\partial \mathbf{L}}{\partial \dot{p}} + \mathbf{L}$

- (D) $\dot{p} \frac{\partial L}{\partial \dot{p}} L$
- 22. निम्नलिखित में से कौनसा कैनोनिकल रूपांतरण, फलन F = qQ के बनने से उत्पन्न होता है ?
 - (A) p = Q, P = q

(B) p = -Q, P = q

(C) p = Q, P = -q

- (D) p = -Q, P = -q
- 23. यदि $\stackrel{\rightarrow}{\rm L}$ एक कोणीय संवेग है और \hat{n} किसी भी दिशा पर एक इकाई वेक्टर है, तब निम्नलिखित में से प्वासों ब्रैकेट्स पर कौनसा सम्बन्ध **सही** है ?
 - (A) $\begin{bmatrix} \overrightarrow{\mathbf{L}}, \overrightarrow{\mathbf{L}} \cdot \hat{n} \end{bmatrix} = 0$

(B) $\left[\stackrel{\rightarrow}{\mathbf{L}},\stackrel{\rightarrow}{\mathbf{L}}.\hat{n}\right] = \hat{n}$

(C) $\begin{bmatrix} \overrightarrow{L}, \overrightarrow{L}.\hat{n} \end{bmatrix} = \overrightarrow{L}$

- (D) $\begin{bmatrix} \vec{L}, \vec{L}.\hat{n} \end{bmatrix} = \hat{n} \times \vec{L}$
- 24. α और β के कौनसे मान के लिए $Q=q^{\alpha}\cos\beta p$ और $P=q^{\alpha}\sin\beta p$ रूपान्तरण कैनोनिकल है $[q,\,p]=1$?
 - (A) $\alpha = 1/2$ और $\beta = 2$
- (B) $\alpha = 2$ और $\beta = 1/2$
- (C) $\alpha = 1/2$ और $\beta = 1$
- (D) $\alpha = 1$ और $\beta = 1/2$

- 25. Find the generating function F(P, q) for the transformation p = 1/Q, $q = PQ^2$:
 - (A) \sqrt{Pq}

(B) $\sqrt{Pq^2}$

(C) $-\sqrt{P^2q}$

- (D) $\sqrt{P^2q^3}$
- 26. For a simple pendulum, the Lagrangian $L = \frac{1}{2} ml^2 \dot{\theta}^2 mgl (1 \cos \theta)$. The Poisson bracket $[\theta, \dot{\theta}]$ will be equal to :
 - (A) 1

(B) g/1

(C) 1/ml²

- (D) m/1
- 27. A light planet is revolving around a very massive star in a circular orbit of radius R with a period of revolution T. If the gravitational force of attraction between the planet and the star is proportional to $R^{-5/2}$, then the value of T^2 is proportional to:
 - (A) R^3

(B) $R^{7/2}$

(C) $R^{3/2}$

- (D) $R^{5/4}$
- 28. For a particle moving uniformly, the function $F = ax \frac{bpt}{2m}$ (a and b being two constants and other symbol having usual significance) is:
 - (A) a constant of time provided a = b
 - (B) a constant of time provided a = b/2
 - (C) a constant of time provided a = -b
 - (D) not a constant of time
- 29. An infinitely long cylinder, lying along the z-axis, has a charge density $k\sqrt{x^2+y^2}$, where k is a constant. The electric field inside the conductor in SI units is:
 - (A) $\frac{1}{3 \in_0} k \sqrt{x^2 + y^2} (x\vec{i} + y\vec{j})$
- (B) $\frac{1}{8 \in_0} k \sqrt{x^2 + y^2} (x\vec{i} + y\vec{j})$
- (C) $\frac{1}{\epsilon_0} k \sqrt{x^2 + y^2} (x\vec{i} + y\vec{j})$
- (D) $\frac{8}{\epsilon_0} k \sqrt{x^2 + y^2} (x\vec{i} + y\vec{j})$

T.B.C.: 11/18/SET—II

रूपान्तरण $p=1/\mathrm{Q},\ q=\mathrm{PQ}^2$ के लिए जनरेटिंग फलन $\mathrm{F}(\mathrm{P},\ q)$ क्या है : 25. (B) $\sqrt{Pq^2}$ (A) \sqrt{Pq} (D) $\sqrt{P^2q^3}$ (C) $-\sqrt{P^2a}$ एक सामान्य दोलक के लिए लैग्रान्जियन $L=rac{1}{2}\; ml^2\dot{ heta}^2-mgl\;(1-\cos\theta)$ है, प्वासों ब्रैकेट $[\theta,\,\ddot{ heta}]$ 26. किसके बराबर है ? (A) 1 · (B) g/1 (C) $1/ml^2$ (D) m/1 एक हल्का ग्रह, एक बहुत विशाल तारे के चारों ओर, एक R त्रिज्या वाले कक्ष में परिक्रमण T के काल के साथ परिक्रमा कर रहा है। यदि उस ग्रह और तारे के बीच आकर्षण का गुरुत्वीय बल ${
m R}^{-5/2}$ के आनुपातिक है, तब ${
m T}^2$ का मान किसके आनुपातिक है ?(B) $R^{7/2}$ (A) \mathbb{R}^3 (D) $R^{5/4}$ (C) $R^{3/2}$ एकसमान रूप से गति करते हुए एक कण के लिए, फलन $\mathbf{F} = ax - \frac{bpt}{2m}$ क्या है ? (जहाँ 28. a और b स्थिर हैं और अन्य प्रतीक का सामान्य महत्व) है : (A) समय की एक स्थिरता a = b प्रदान करती है (B) समय की एक स्थिरता a = b/2 प्रदान करती है (C) समय की एक स्थिरता a = -b प्रदान करती है (D) समय का एक स्थिरांक नहीं है एक अनंत लम्बे सिलिंडर जो z-अक्ष के समानान्तर रखा है, उसका आवेश घनत्व $k\sqrt{x^2+y^2}$ 29. है, जहाँ k स्थिर है, SI (एस. आई.) इकाई में चालक के अन्दर का वैद्युत क्षेत्र क्या है ? (A) $\frac{1}{3 \in \mathbb{N}} k \sqrt{x^2 + y^2} (x\vec{i} + y\vec{j})$ (B) $\frac{1}{8 \in \mathbb{N}} k \sqrt{x^2 + y^2} (x\vec{i} + y\vec{j})$ (C) $\frac{1}{\epsilon_0} k \sqrt{x^2 + y^2} (x\vec{i} + y\vec{j})$ (D) $\frac{8}{\epsilon_0} k \sqrt{x^2 + y^2} (x\vec{i} + y\vec{j})$

30. When light passes from a medium of refractive index n₁ to another medium of refractive index n₂ in a direction perpendicular to the plane separating the two media, which one of the following pair for the coefficients of reflection (R) and transmission (T) is correct?

(A)
$$R = \frac{n_1 - n_2}{n_1 + n_2}$$
 and $T = \frac{2n_1}{n_1 - n_2}$

(B)
$$R = \frac{n_2 - n_1}{n_1 + n_2}$$
 and $T = \frac{4n_1n_2}{(n_1 + n_2)^2}$

(C)
$$R = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2$$
 and $T = \frac{2n_1n_2}{(n_1 + n_2)^2}$

(D)
$$R = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2$$
 and $T = \frac{4n_1n_2}{(n_1 + n_2)^2}$

- 31. A point charge having acceleration a is radiating electromagnetic radiation. The power radiated is proportional to a^n . The value of n is :
 - (A) 1

(B) 3/2

(C) 2

- (D) 3
- 32. The constant magnetic field required to bend a non-relativistic charged particle of energy E in an arc of the radius of curvature R inside a plane perpendicular to B is:
 - (A) directly proportional to \sqrt{E} and inversely proportional to R
 - (B) directly proportional to R and inversely proportional to \sqrt{E}
 - (C) directly proportional to E and inversely proportional to R²
 - (D) None of the above

30. जब प्रकाश n_1 अपवर्तक सूचकांक के एक माध्यम से n_2 अपवर्तक सूचकांक के माध्यम में, दोनों माध्यमों को पृथक करने वाले तल के अनुलम्ब दिशा में, गुजर रहा है, तब परावर्तन (R) के गुणांक और प्रसारण (T) के लिए कौनसा युग्म **सही** है ?

(B)
$$R = \frac{n_2 - n_1}{n_1 + n_2}$$
 3 $T = \frac{4n_1n_2}{(n_1 + n_2)^2}$

(C)
$$R = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2$$
 $R = \left(\frac{2n_1n_2}{(n_1 + n_2)^2}\right)^2$

(D)
$$R = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2$$
 3117 $T = \frac{4n_1n_2}{(n_1 + n_2)^2}$

- 31. एक a त्वरण वाला बिन्दु आवेश विद्युतचुम्बकीय विकिरण को प्रसारित करता है प्रसारित शिक्त a^n के आनुपातिक है। n का मान क्या है :
 - (A) 1

(B) 3/2

(C) 2

- (D) 3
- 32. B के अनुलम्ब एक समतल के अन्दर, R वक्रता की त्रिज्या के एक चाप में ऊर्जा E के एक गैर-सापेक्षिकीय आवेशित कण को मुड़ने के लिए कैसे स्थिर चुम्बकीय क्षेत्र की आवश्यकता है ?
 - (A) \sqrt{E} के सीधे आनुपातिक और R के व्युत्क्रमानुपातिक
 - (B) R के सीधे आनुपातिक और √E के व्युत्क्रमानुपातिक
 - (C) E के सीधे आनुपातिक और R² के व्युत्क्रमानुपातिक
 - (D) उपर्युक्त में से कोई नहीं

		in the second se		
33.	The	force of attraction per unit length	betw	een two long, parallel wires which
	are	at a distance d from one anoth	er an	d carry current I_1 and I_2 is :
	(A)	$rac{\mu_0}{4\pi}rac{ ext{I}_1 ext{I}_2}{d}$	(B)	$rac{\mu_0}{4\pi}rac{ ext{I}_1 ext{I}_2}{d^2}$
	(C)	$\frac{\mu_0}{2\pi} \frac{\mathrm{I_1I_2}}{d}$	(D)	None of these
34.	Whe	en an unpolarised light beam is	incide	ent at the Brewester angle on an
	inte	rface between two optical media	, the	reflected beam is:
A	(A)	totally polarised parallel to the	inte	rface
r	(B)	totally polarised perpendicular	to the	e interface
20 20	(C)	circularly polarised in clockwise	e dire	ction
	(\mathbb{D})	circularly polarised in anticlock	wise	direction
35.	Let	the electric and magnetic fields i	n an	inertial frame S be $\stackrel{ ightharpoonup}{ ext{E}}$ and $\stackrel{ ightharpoonup}{ ext{B}}$ and
	in a	nother frame S' moving with ve	locity	\vec{v} relative to S be \vec{E}' and \vec{B}' . If
	→ E is	s zero in the frame S, \overrightarrow{E}' in the	e frar	me S' is :
	(A)	0	(B)	$\vec{v} \times \vec{B}$
	(C)	$c\overrightarrow{\mathrm{B}}$	(D)	$v\overrightarrow{\mathrm{B}}$
36.	Whi	ch of the following quantities	are L	orentz invariant : $X = \overrightarrow{E} \cdot \overrightarrow{B}$ and
	Y =	$E^2 - C^2 B^2$:		
	(A)	Only X	(B)	Only Y
125	(C)	Both X and Y	(D)	Neither X nor Y
37.	Wha	at will be the error in the value	of the	e integral $\int_0^{100} (x^3 - 4x^2 + x - 5) dx$
	eval	uated from Simpson's rule using	g 100	steps ?
	(A)	0	(B)	0.01
	(C)	0.001	(D)	0.0001
T.B.C.	.:11/	/18/SET—II 18		

33.		बी, समानान्तर तारें, जो कि एक दूसरे रं ारों के बीच प्रति इकाई लम्बाई पर आव		री पर हैं और उनमें ${\rm I}_1$ और ${\rm I}_2$ धारा हैं, ${\rm I}_3$ बल कितना है ?				
	उन त	रा क जाय प्राता इकाइ राज्याह नर जान		T. T.				
	(A)	$\frac{\mu_0}{4\pi} \frac{\mathrm{I_1I_2}}{d}$	(B)	$\frac{\mu_0}{4\pi} \frac{{ m I}_1 { m I}_2}{d^2}$				
	(C)	$\frac{\mu_0}{2\pi} \frac{\mathbf{I_1}\mathbf{I_2}}{d}$	(D)	इनमें से कोई नहीं				
34.	जब दो प्रकाशीय माध्यमों के बीच एक अन्तराफलक पर ब्रूस्टर कोण पर एक अधुवित (अनपोलेराइण्ड)							
		। पुंज पड़ता है, तो परावर्तित पुंज कैसा						
		अन्तराफलक से समानान्तर और पूर्ण धुर		, •				
1.		अन्तराफलक के अनुलम्ब और पूर्ण धुवं						
		दक्षिणावर्त दिशा में वृत्ताकार ध्रुवीकृत	r					
		वामावर्त दिशा में वृत्ताकार ध्रुवीकृत						
35.				र चुम्बकीय क्षेत्र $\stackrel{ ightarrow}{E}$ और $\stackrel{ ightarrow}{B}$ हैं और दूसरे				
	फ्रेम	\mathbf{S}' जो कि \mathbf{S} के सापेक्ष $ec{v}$ के वेग से ग	ति कर	रहा है, उसमें $\stackrel{ ightharpoonup}{E'}$ और $\stackrel{ ightharpoonup}{B'}$ हैं। यदि फ्रेम				
	S में	$\stackrel{ ightarrow}{E}$ शून्य है तो फ्रेम S' में $\stackrel{ ightarrow}{E'}$ कितना	होगा	?				
	(A)	0	(B)	$\vec{v} \times \overrightarrow{\mathbf{B}}$				
	(C)	$c\overrightarrow{\mathrm{B}}$	(D)	$v\overrightarrow{\mathrm{B}}$				
36.	निम्न	लिखित में से कौनसा भाग लॉरेंज अचल	है, 🛚	$X = \stackrel{\rightarrow}{E} \cdot \stackrel{\rightarrow}{B}$ और $Y = E^2 - C^2 B^2$:				
	(A)	केवल X	(B)	केवल Y				
	(C)	X और Y दोनों	(D)	न तो X और न ही Y				
37.	100	चरणों का उपयोग करते हुए सिम्पसन नियम द्व	ारा मूल्य	ांकृत समाकल $\int_0^{100} (x^3 - 4x^2 + x - 5) dx$				
	के ग	नान में क्या त्रुटि होगी ?						
	(A)	0	(B)	0.01				
	(C)		(D)	0.0001				

38. A particle of mass m is confined to move in a one-dimensional box of length L. If the particle is in 'nth energy level, the expectation value of the linear momentum p of the particle is:

(A)
$$\langle p \rangle = 0$$

(B)
$$\langle p \rangle = n\pi\hbar / L$$

(C)
$$\langle p \rangle = -n\pi\hbar/L$$

(D)
$$\langle p \rangle = 2n\pi\hbar / L$$

39. For a particle in the *n*th energy level of one-dimensional harmonic oscillator potential, the product of uncertainties in position and momentum is:

(A)
$$\Delta x \cdot \Delta p = \left(n + \frac{1}{2}\right)\hbar$$

(B)
$$\Delta x \cdot \Delta p = n\hbar$$

(C)
$$\Delta x \cdot \Delta p = \frac{n^2}{2}\hbar$$

(D)
$$\Delta x \cdot \Delta p = \hbar$$

40. For a harmonic oscillator, which of the following relations on the operators \hat{x} and \hat{p} is *correct*?

(A)
$$\hat{x}^n \hat{p} - \hat{p} \hat{x}^n = ni\hbar \hat{x}^{n-1}$$

(B)
$$\hat{x}^n \hat{p} + \hat{p} \hat{x}^n = ni\hbar \hat{x}^{n-1}$$

(C)
$$\hat{x}\hat{p}^n - \hat{p}^n\hat{x} = ni\hbar\hat{x}^{n-1}$$

(D)
$$\hat{x}\hat{p}^n + \hat{p}^n\hat{x} = ni\hbar\hat{x}^{n-1}$$

41. The possible values of the total angular momentum quantum number J under the LS coupling of the two atomic electrons whose orbital angular momentum quantum numbers are $l_1=1$ and $l_2=2$ are :

(A)
$$J = 0, 1, 2, 3 \text{ and } 4$$

(B)
$$J = 0, 1, 2 \text{ and } 3$$

(C)
$$J = 1, 2, 3 \text{ and } 4$$

(D)
$$J = 2$$
, 3 and 4

T.B.C.: 11/18/SET-II

 ${
m L}$ लम्बाई के एक एक-आयामी बॉक्स में गति करने के लिए m द्रव्यमान का एक कण 38. रखा है। यदि कण nवें ऊर्जा स्तर पर है, तब कण के रेखीय संवेग p का संभावित मान क्या होता है ?

(A)
$$\langle p \rangle = 0$$

(B)
$$\langle p \rangle = n\pi\hbar / L$$

(C)
$$\langle p \rangle = -n\pi\hbar/I$$

(D)
$$\langle p \rangle = 2n\pi\hbar/L$$

एक-आयामी हार्मोनिक (एकसार) दोलक विभव के nवें ऊर्जा स्तर में एक कण के लिए स्थिति 39. और संवेग में अनिश्चितता का फल क्या है ?

(A)
$$\Delta x \cdot \Delta p = \left(n + \frac{1}{2}\right)\hbar$$

(B)
$$\Delta x \cdot \Delta p = n\hbar$$

(C)
$$\Delta x \cdot \Delta p = \frac{n^2}{2}\hbar$$

(D)
$$\Delta x \cdot \Delta p = \hbar$$

एक हार्मोनिक (एकसार) दोलक के लिए प्रचालक \hat{x} और \hat{p} पर निम्नलिखित में से कौनसा 40. सम्बन्ध सही है ?

(A)
$$\hat{x}^n \hat{p} - \hat{p}\hat{x}^n = ni\hbar\hat{x}^{n-1}$$
 (B) $\hat{x}^n \hat{p} + \hat{p}\hat{x}^n = ni\hbar\hat{x}^{n-1}$

(B)
$$\hat{x}^n \hat{p} + \hat{p} \hat{x}^n = ni\hbar \hat{x}^{n-1}$$

(C)
$$\hat{x}\hat{p}^n - \hat{p}^n\hat{x} = ni\hbar\hat{x}^{n-1}$$

(D)
$$\hat{x}\hat{p}^n + \hat{p}^n\hat{x} = ni\hbar\hat{x}^{n-1}$$

कक्षीय कोणीय संवेग क्वांटम संख्या $l_1=1$ और $l_2=2$ वाले दो परमाणु इलेक्ट्रॉनों के 41. LS युग्मन (कपलिंग) के अन्तर्गत कुल कोणीय संवेग क्वांटम संख्या J के संभावित मान कौनसे हैं ?

(D)
$$J = 2, 3$$
 और 4

42. Consider the density operators:

$$\rho_1 = \begin{bmatrix} \frac{1}{2} & 0 & \frac{1}{4} \\ 0 & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & 0 & \frac{1}{4} \end{bmatrix}, \quad \rho_2 = \begin{bmatrix} \frac{9}{25} & \frac{12}{25} \\ \frac{12}{25} & \frac{16}{25} \end{bmatrix}.$$

Which one of the following is true ?

- (A) ρ_1 is pure state; ρ_2 is mixed state
- (B) ρ_1 is mixed state; ρ_2 is pure state
- (C) ρ_1 is not acceptable state; ρ_2 is mixed state
- (D) ρ_1 is mixed state; ρ_2 is not acceptable state

43. Consider the one-dimensional harmonic oscillator (t = 0) is in the state:

$$|\alpha\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle).$$

For t > 0, the expectation value $\langle (\Delta x)^2 \rangle$ for state $|\alpha\rangle$ as function of time is:

(A)
$$\frac{\hbar}{2m\omega}\sin^2\omega t$$

(B)
$$\frac{\hbar}{2m\omega}\cos^2\omega t$$

(C)
$$\frac{\hbar}{2m\omega} \sin \omega t \cos \omega t$$

(D)
$$\frac{\hbar}{m\omega}\sin\omega t\cos\omega t$$

44. The Hamiltonian of a rigid rotor in a magnetic field is

$$H = 16\overset{\rightarrow}{L^2} + 8\overset{\wedge}{L_z} + 0.5\overset{\wedge}{L_y}$$

and $|L,M\rangle$ is in the unperturbed basis state. The first order correction in energy is :

(A) 0 Mħ

(B) 0.0625 Mħ

(C) 0.0313 Mħ

(D) 0.25 Mħ

निम्नलिखित घनत्व प्रचालकों पर विचार कीजिए: 42.

$$\rho_1 = \begin{bmatrix} \frac{1}{2} & , 0 & \frac{1}{4} \\ 0 & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & 0 & \frac{1}{4} \end{bmatrix}, \quad \rho_2 = \begin{bmatrix} \frac{9}{25} & \frac{12}{25} \\ \frac{12}{25} & \frac{16}{25} \end{bmatrix}.$$

निम्नलिखित में से कौनसा सत्य है ?

- (A) ρ₁ शुद्ध अवस्था है; ρ₂ मिश्रित अवस्था है
- (B) ρ₁ मिश्रित अवस्था है; ρ₂ शुद्ध अवस्था है
- (C) ρ_1 स्वीकार्य अवस्था है; ρ_2 मिश्रित अवस्था है
- (D) ρ_1 मिश्रित अवस्था है; ρ_2 स्वीकार्य अवस्था नहीं है
- एक आयामी हार्मीनिक दोलक (t=0) की अवस्था 43.

$$|\alpha\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$

पर विचार कीजिए। t>0 के लिए, समय के फलन के रूप में अवस्था |lpha
angle के लिए संभावित मान $\langle (\Delta x)^2 \rangle$ क्या है ?

(A)
$$\frac{\hbar}{2m\omega}\sin^2\omega t$$

(B)
$$\frac{\hbar}{2m\omega}\cos^2\omega t$$

(C)
$$\frac{\hbar}{2m\omega} \sin \omega t \cos \omega t$$
 (D) $\frac{\hbar}{m\omega} \sin \omega t \cos \omega t$

(D)
$$\frac{\hbar}{m\omega} \sin \omega t \cos \omega t$$

एक चुम्बकीय क्षेत्र में कठोर रोटर का हैमिल्टोनियन 44.

$$H = 16\overset{\rightarrow}{L^2} + 8\overset{\wedge}{L_z} + 0.5\overset{\wedge}{L_y}$$

है और |L,M
angle अचल आधारित अवस्था में है ? ऊर्जा में प्रथम क्रम का संशोधन क्या है ?

(A) 0 Mħ

(B) 0.0625 Mħ

0.0313 Mħ (C)

(D) 0.25 Mħ

For the hard-sphere scattering, the partial wave phase shift (δ_l) is : 45.

(A)
$$\tan^{-1}\left[\frac{n_l(ka)}{j_l(ka)}\right]$$
,

(B)
$$\tan^{-1} \left[\frac{j_{l+1}(ka)}{n_l(ka)} \right]$$

(C)
$$\tan^{-1} \left[\frac{j_l(ka)}{n_{l+1}(ka)} \right]$$

(D)
$$\tan^{-1} \left[\frac{j_l(ka)}{n_l(ka)} \right]$$

A particle is in a two-dimensional potential: 46.

$$V(r) = V_0 \exp(-r/\alpha)$$

where a is a constant. For the trial wave function $\Psi(r) = \operatorname{C} \exp(-\beta/r)$ (β is a constant), the expectation value $\langle r^2 \rangle$ is :

$$(A) \quad \frac{1}{\beta^2}$$

$$(B) \quad \frac{3}{2\beta^2}$$

(C)
$$\frac{2}{\beta^2}$$

$$(D) \quad \frac{1}{2\beta^2}$$

The first-order relativistic correction to electron's kinetic energy is : 47.

(A)
$$-\frac{1}{2m_ec^2}\left(\frac{p^2}{2m_e}\right)$$

(B)
$$-\frac{1}{4m_e^2c^2}\left(\frac{p^2}{2m_e}\right)$$

(C)
$$-\frac{2}{m_e c^2} \left(\frac{p^2}{2m_e} \right)$$

(C)
$$-\frac{2}{m_e c^2} \left(\frac{p^2}{2m_e}\right)$$
 (D) $-\frac{3}{2m_e c^2} \left(\frac{p^2}{2m_e}\right)$

The Hamiltonian of a quantum system is represented as: 48.

$$\mathbf{H}_0 = \begin{pmatrix} \alpha & i & 0 \\ -i & \alpha & 0 \\ 0 & 0 & \beta \end{pmatrix}$$

The energy eigen values of the system are :

(A)
$$2\alpha - 1$$
, $2\alpha + 1$ and β

(B)
$$\alpha$$
, 2α and $\beta-1$

(C)
$$\alpha/2$$
, 2α and $\beta-1$

(D)
$$\alpha - 1$$
, $\alpha + 1$ and β

45. हार्ड स्फीयर (कठोर गोलीय) छितराव के लिए आंशिक तरंग अवस्था शिफ्ट (δ_l) क्या है ?

$${\rm (A)} \quad \tan^{-1} \biggl[\frac{n_l(ka)}{j_l(ka)} \biggr],$$

(B)
$$\tan^{-1} \left[\frac{j_{l+1}(ka)}{n_l(ka)} \right]$$

(C)
$$\tan^{-1} \left[\frac{j_l(ka)}{n_{l+1}(ka)} \right]$$

(D)
$$\tan^{-1} \left[\frac{j_l(ka)}{n_l(ka)} \right]$$

46. एक कण द्विआयामी विभव :

$$V(r) = V_0 \exp(-r/a)$$

में है जहाँ a स्थिर है, ट्रायल वेव फंक्शन $\Psi(r)=\mathrm{C}\exp\left(-\beta/r\right)$ (β स्थिर है) के लिए संभावित मान $\langle r^2 \rangle$ क्या है ?

(A)
$$\frac{1}{\beta^2}$$

(B)
$$\frac{3}{2\beta^2}$$

(C)
$$\frac{2}{\beta^2}$$

(D)
$$\frac{1}{2\beta^2}$$

47. इलेक्ट्रॉन की गतिज ऊर्जा में प्रथम क्रम सापेक्षिकीय संशोधन क्या है ?

(A)
$$-\frac{1}{2m_e c^2} \left(\frac{p^2}{2m_e}\right)$$

(B)
$$-\frac{1}{4m_o c^2} \left(\frac{p^2}{2m_o}\right)$$

(C)
$$-\frac{2}{m_e c^2} \left(\frac{p^2}{2m_e} \right)$$

(D)
$$-\frac{3}{2m_ec^2}\left(\frac{p^2}{2m_e}\right)$$

48. क्वांटम सिस्टम का हैमिल्टोनियन

$$\mathbf{H}_0 = \begin{pmatrix} \alpha & i & 0 \\ -i & \alpha & 0 \\ 0 & 0 & \beta \end{pmatrix}$$

के रूप में निरूपित किया जाता है। सिस्टम के ऊर्जा आइगन मान कौनसे हैं ?

- (A) $2\alpha 1, 2\alpha + 1$ और β
- (B) α, 2α और β-1
- (C) α/2, 2α और β-1
- (D) $\alpha-1, \alpha+1$ और β

- 49. Work done in a quasi-static thermodynamical process:
 - (A) depends on the actual path followed
 - (B) is independent of the path followed
 - (C) depends only on initial and final point
 - (D) None of the above
- 50. The Gibbs phase rule for a non-reactive system is:
 - (A) degree of freedom = number of constituents + number of phases +2
 - (B) degree of freedom = number of constituents + number of phases −1
 - (C) degree of freedom = number of constituents number of phases +2
 - (D) degree of freedom = number of constituents number of phases +1
- 51. Heat is transferred directly from a heat reservoir at 280°C to another heat reservoir at 15°C. If the amount of heat transfer is 100 kJ, then the total entropy change due to this process is:
 - (A) +0.166 kJ/K

(B) -0.166 kJ/K

(C) +0.528 kJ/K

- (D) -0.528 kJ/K
- 52. A reversible engine receives equal quantises of heat from two reservoir A and B maintained at Temperature T_A and T_B, respectively. The engine rejects heat to a reservoir C at temperature T_C. The thermal efficiency of the engine is:
 - $(A) \quad \frac{2T_{A}T_{B}-T_{C}T_{B}-T_{C}T_{A}}{2T_{A}T_{B}}$
- (B) $\frac{2T_{B}T_{C}-T_{A}T_{B}-T_{C}T_{A}}{2T_{A}T_{B}}$
- $(C) \quad \frac{2T_CT_A T_AT_B T_BT_C}{2T_AT_B}$
- $(D) \quad \frac{2T_{A}T_{B} T_{C}T_{B} T_{C}T_{A}}{2T_{B}T_{C}}$
- 53. The plasma at the centre of sun has Temperature $T=1.6\times 10^7$ K, and the density of hydrogen and helium are $\rho_H=6\times 10^4 \text{kgm}^{-3}$ and $\rho_H=6\times 10^4 \text{kgm}^{-3}$, respectively. The ratio of the thermal wavelength of proton to alpha particle is :
 - (A) 1/2

(B) 1/4

(C) 2

(D) 4

- 49. एक अर्द्ध-स्थिर ऊष्मप्रावैगिकी प्रक्रिया में किया गया कार्य:
 - (A) वास्तविक पथ पर अनुसरण पर निर्भर होता है
 - (B) अनुसरण किये गये पथ से स्वतंत्र होता है
 - (C) केवल आरम्भिक और अन्तिम बिन्दु पर निर्भर होता है
 - (D) उपर्युक्त में से कोई नहीं
- 50. नॉनरिएक्टिव (निष्क्रिय) तन्त्र के लिए गिब्स फेज नियम कौनसा है ?
 - (A) स्वतंत्रता की कोटि = संघटकों की संख्या + अवस्थाओं की संख्या +2
 - (B) स्वतंत्रता की कोटि = संघटकों की संख्या + अवस्थाओं की संख्या -1
 - (C) स्वतंत्रता की कोटि = संघटकों की संख्या अवस्थाओं की संख्या +2
 - (D) स्वतंत्रता की कोटि = संघटकों की संख्या अवस्थाओं की संख्या +1
- 51. एक ऊष्मा कुंड से 280°C पर दूसरे ऊष्मा कुंड में 15°C पर ऊष्मा सीधे ही स्थानान्तरित होती है। यदि ऊष्मा स्थानान्तरण की मात्रा 100 kJ है, तब इस प्रक्रिया के कारण कुल एन्ट्रॉपी कितनी है ?
 - (A) +0.166 kJ/K

(B) -0.166 kJ/K

(C) +0.528 kJ/K

- (D) -0.528 kJ/K
- 52. एक प्रतिवर्ती इंजन को T_A और T_B तापमान पर कायम दो कुंडों क्रमशः A और B से ऊष्मा की एकसमान मात्रायें प्राप्त होती हैं। यह इंजन एक कुंड C से T_C तापमान पर ऊष्मा को अस्वीकार करता है। इंजन की तापीय दक्षता कितनी है ?
 - (A) $\frac{2T_{A}T_{B}-T_{C}T_{B}-T_{C}T_{A}}{2T_{A}T_{B}}$
- $(B) \quad \frac{2T_BT_C-T_AT_B-T_CT_A}{2T_AT_B}$

(C) $\frac{2T_{C}T_{A}-T_{A}T_{B}-T_{B}T_{C}}{2T_{A}T_{B}}$

- (D) $\frac{2T_{A}T_{B} T_{C}T_{B} T_{C}T_{A}}{2T_{B}T_{C}}$
- 53. सूर्य के केन्द्र में प्लाज्मा का तापमान $T=1.6\times 10^7~\mathrm{K}$ है और हाइड्रोजन और हीलियम का घनत्व क्रमशः $\rho_{\mathrm{H}}=6\times 10^4 \mathrm{kgm}^{-3}$ और $\rho_{\mathrm{H}}=6\times 10^4 \mathrm{kgm}^{-3}$ है। तब प्रोटोन की तापीय तरंगदैष्टं से एल्फा कण का अनुपात क्या है ?
 - (A) 1/2

(B) 1/4

(C) 2

(D). 4

54.	Two-level	systems	having	random	energy	spacings	3	are	distributed	3 1	a
18	constant p	probabilit	ty:								

$$p(\varepsilon) = P_0$$

The specific heat of the system is:

 $(A) \quad \frac{P_0}{2\beta}$

(B) $\frac{P_0}{4\beta}$

(C) $\frac{P_0}{8\beta}$

(D) None of these

(Hint.
$$n_{\pm} = \frac{1}{\exp(\pm \beta \epsilon) + 1}$$
)

55. Match the thermodynamical processes in column I with expression of entrepy in column II:

Column I

Column II

- (a) Adiabatic process
- $_{c}$ (1) $C_{v} \ln \frac{T_{2}}{T_{1}}$
- (b) Isothermal process
- (2) Constant

(c) Isochoric process

(3) $\frac{Q}{T}$

(d) Isobaric process

 $_{(4)}$ $C_{\mathrm{p}} \ln rac{\mathrm{T_2}}{\mathrm{T_1}}$

Codes:

- $(a) \quad (b) \quad (c) \quad (d)$
- (A) (2) (3) (1) (4)
- (B) (3) (4) (2) (1)
- (C) (4) (1) (3) (2)
- (D) (3) (2) (4) (1)
- 56. A computer assigns ATM card PINs having four digits. The PIN should not begin with zero. The probability that all four digits are different is:
 - (A) 0.900

(B) 0.504

(C) 0.405

(D) 0.309

54.	यादृच्हि	ष्क उ	कर्जा स्पी	संग ε	वाले हि	दुस्तरीय	तंत्र	एक सि	थर संभा	वना	•				
						-	ϵ) = I								
	के सा	थ वि	तरित हैं	। तंत्र व	की विशि	शेष्ट उ	ज्या रि	कतनी	है ?						
	(A)	$\frac{P_0}{2\beta}$						(B)	$\frac{P_0}{4\beta}$						
	(C)	$\frac{P_0}{8\beta}$						(D)	इनमें से	कोई	नहीं				
			$=\frac{1}{\exp(\frac{1}{2})}$. 3					
55.	कॉलम	ा में	दी गर्य	कष्मप्र	ग्रवैगिर्क	प्रक्रिय	याओं व	को कॉ	लम II र	में दिये	गये	एन्ट्रॉपी	की 3	नभिव्य	क्ति
10			मेलित व												
			म I						कॉलम	II					
	(a)	रुद्धो	ष्म प्रक्रा	FI .				(1)	$C_v \ln$	$\frac{\mathrm{T_2}}{\mathrm{T_1}}$					
	(b)	समत	गपीय प्र	क्रम				(2)	स्थिर						
			सोकोरिक					(3)	$\frac{Q}{T}$	v					
	(d)	सम	दाबी (अ	गाइसोबैि	रंक) प्र	क्रम		(4)	$C_P \ln$	$\frac{T_2}{T_1}$					
	कोड	:		-											
		(a)	(b)	(c)	(d)									* "	
	(A)	(2)	(3)	(1)	(4)										
	(B)	(3)	(4)	(2)	(1)										
	(C)	(4)	(1)	(3)	(2)										
	(D)	(3)	(2)	(4)	(1)										
56.	एक	कम्प्ट	ूटर ए.टी	.एम. व	गर्ड औ	र चार	अंकों	वाले वि	पेन (PII	V) देत	ा है।	पिन क	ो शून्य	से 3	नारम्भ
	नहीं	होना	् चाहिए।	वह स	गंभावना	कितर्न	ते हैं वि	के सभ	ी चार	अंक '	भिन्न	हों ?			
	(A)		900					(B)							
	(C)	0.4	105					(D)	0.309	9					

57.	A gas of N non-interacting	g particles is	in equilibrium at tem	perature T. Each
	particle can be in any of	the possible	non-degenerate state	s of energy $0, 2\epsilon$,
	4ε, then average energy	per particle	of the gas, at $\beta\epsilon <<$	1 is:
	(A) 2ε/3		(B) ε	

58. A system can have three energy level, E = 0, $\pm \epsilon$, the level E = 0 is doubly degenerate, while the others are non-degenerate. The average energy at inverse temperature is:

(D) 3ε

(A)
$$\varepsilon (e^{\beta \varepsilon} - e^{-\beta \varepsilon}) / (1 + e^{\beta \varepsilon} + e^{-\beta \varepsilon})$$
 (B) $-\varepsilon \tanh(\beta \varepsilon)$
(C) $-\varepsilon \tanh(\beta \varepsilon / 2)$ (D) 0

59. In kinetic theory of gases, the pressure of a gas in a container can be written as $p = \frac{2}{3}$ U. For a monoatomic gas, the quantity U is :

- (A) kinetic energy per molecule
- (B) total kinetic energy of all the molecules in the container
- (C) total average kinetic energy of molecules in one mole
- (D) total average kinetic energy of molecules in unit volume
- 60. The molar specific heat of a gas as given from the kinetic theory is $\frac{5}{2}$ R. If it is not specified whether it is C_p or C_v , one could conclude that the molecules of the gas:
 - (A) are definitely rigid diatomic
 - (B) are definitely mono atomic
 - (C) are definitely non-rigid diatomic
 - (D) can be mono atomic or rigid diatomic

(C)

2ε

57.	निष्क्रिय (नॉन-इंट	रेक्टिंग) कर्ण	ii N ane	एक गैस	तापमान	T पर	साम्या	वस्था में	है।	प्रत्येक	कण
	ऊर्जा 0, 2ह, 4ह	के किसी भी	सम्भावित	त गैर-अप	घटनीय	अवस्था	में रह	सकता	है।	तब गैर	। की
	प्रति कण औसत	ऊर्जा, βε<	< 1 पर 1	कितनी है	?						
	(4) 0 10			,							

(A) $2\varepsilon/3$ (B) ε

(C) 28 (D) 3E

एक प्रक्रम के तीन ऊर्जा स्तर हो सकते हैं, $E=0,\pm\epsilon$, जिसमें E=0 दुगुना नष्टधर्मी है, 58. जबिक अन्य गैरनष्टधर्मी हैं। प्रतिलोम तापमान पर औसत ऊर्जा क्या है ?

(A) $\varepsilon (e^{\beta \varepsilon} - e^{-\beta \varepsilon}) / (1 + e^{\beta \varepsilon} + e^{-\beta \varepsilon})$ (B) $-\varepsilon \tanh(\beta \varepsilon)$

(C) $-\varepsilon \tanh(\beta \varepsilon/2)$

(D) 0

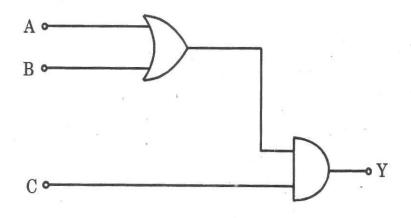
- गैसों के गतिज सिद्धान्त में, एक पात्र की गैस के दाब को $p=\frac{2}{3}\,\mathrm{U}$ के रूप में लिखा जा 59. सकता है। एक एक-परमाणुक गैस के लिए मात्रा U क्या है ?
 - (A) प्रति अणु गतिज ऊर्जा
 - पात्र के सभी अणुओं की कुल गतिज ऊर्जा
 - एक मोल में अणुओं की कुल औसत गतिज ऊर्जा
 - (D) इकाई आयतन में अणुओं की कुल औसत गतिज ऊर्जा
- एक गैस की मोलर विशिष्ट-ऊष्मा $\frac{5}{2}$ R है जैसा कि गतिज सिद्धान्त से दर्शाता है। यदि यह निर्दिष्ट 60. नहीं किया जाय कि यह C_p है या C_v , तब कोई यह निष्कर्ष निकाल सकता है कि गैस के अण् :
 - (A) निश्चित रूप से कठोर द्विपरमाणुक हैं
 - (B) निश्चित रूप से एकपरमाणुक हैं
 - (C) निश्चित रूप से कठोरतारहित द्विपरमाणुक हैं
 - (D) एकपरमाणुक या कठोर द्विपरमाणुक हो सकते हैं

61.	Two	vessels separately contain tw	o ide	eal gases A and B at the same			
	temp	perature. The pressure of A being	twice	e that of B. Under these conditions			
	dens	sity of A is found to be one and	half	times the density of B. The ratio			
	of n	nolecular weight of A and B is:					
	(A)	1/2	(B)	2/3			
1.6	(C)	3/4	(D)	2			
62.	Regarding to entropy, which of the following statements is false?						
,	(A)	in an irreversible process, the	entro	py of the universe increases			
	(B)	in a reversible process, the ent	ropy	change of the universe is zero			
E. s.	(C)	for any process, the entropy of	the	universe never decreases			
	(D)	when a system changes state, the	e resu	lting entropy change depends upon			
		the process by which the change	ge of	state occurs			
63.	Prec	ision in a measurement by an e	electr	onic instrument is defined as:			
	(A)	Repeatability	(B)	Reliability			
	(C)	Uncertainty	(D)	Accuracy			
64.	For	a 5-bit ladder, if the input for le	evel	0 = 0 V and for level $1 = +10 V$,			
	the	output voltage of second most si	ignifi	cant bit (MSB) is:			
	(A)	0.625 V	(B)	1.25 V			
	(C)	2.5 V	(D)	10 V			
65.	For	a 5-bit resistive divider, determ	ine t	the weights assigned to the least			
	sign	ificant bit (LSB):					
	(A)	1/31	(B)	1/33			
	(C)	5/31	(D)	5/33			
		*	38				

61.	दो अ	लग-अलग वैसल्स में समान तापमान	पर A और	B दो आदर्श गैसें हैं। A का दाब B के	
	दाब :	से दुगुना है। इन स्थितियों के अन्तर्गत	A का घन	त्व एक पाया गया और B के घनत्व का	
	आधा	गुना पाया गया। A और B के अप्	गुभार का अ	भनुपात क्या है ?	
	(A)	1/2	(B) 2	2/3	
	(C)	3/4	(D) 2	2	
62.	एन्ट्रॉप	ी के विषय में निम्नलिखित में से क	ौनसा कथन	असत्य है ?	
r.* .	(A)	एक अपरिवर्तनीय प्रक्रम में ब्रह्माण्ड	की एन्ट्रॉपी	बढ़ती है	32
	(B)	एक प्रतिवर्ती प्रक्रम में ब्रह्माण्ड की	एन्ट्रॉपी का	परिवर्तन शून्य होता है	
, p	(C)	किसी भी प्रक्रम के लिए ब्रह्माण्ड	की एन्ट्रॉपी	कभी नहीं घटती	
E P	(D)	जब एक प्रक्रम अवस्था बदलता है त	ब उसके पा	रिणामस्वरूप परिवर्तन उस प्रक्रम पर निर्भर	
	W 0	करता है जिसके द्वारा अवस्था में प	रिवर्तन हुआ		
63.	एक	इलेक्ट्रॉनी उपकरण द्वारा एक मापन र	नें शद्धता क	हो कैसे परिभाषित किया जाता है ?	
		पुनरावर्तनीयता		विश्वसनीयता	8
	(A)		(B)		3 3
64.	(A)	पुनरावर्तनीयता अनिश्चितता	(B) (D)	विश्वसनीयता	
64.	(A) (C) एक	पुनरावर्तनीयता अनिश्चितता 5-बिट लैडर के लिए यदि लेवल के	(B) (D) लिए निवेश	विश्वसनीयता यथार्थता	
64.	(A) (C) एक	पुनरावर्तनीयता अनिश्चितता 5-बिट लैंडर के लिए यदि लेवल के +10 V है तब सबसे महत्वपूर्ण द्विती	(B) (D) लिए निवेश	विश्वसनीयता यथार्थता रा (इनपुट) लेवल 0 = 0 V और लेवल	
64.	(A) (C) एक 1 = 袁?	पुनरावर्तनीयता अनिश्चितता 5-बिट लैंडर के लिए यदि लेवल के +10 V है तब सबसे महत्वपूर्ण द्विती	(B) (D) लिए निवेश य बिट (M	विश्वसनीयता यथार्थता रा (इनपुट) लेवल 0 = 0 V और लेवल	
64.	(A) (C) एक 1 = 袁? (A)	पुनरावर्तनीयता अनिश्चितता 5-बिट लैंडर के लिए यदि लेवल के +10 V है तब सबसे महत्वपूर्ण द्विती	(B) (D) लिए निवेश य बिट (M	विश्वसनीयता यथार्थता रा (इनपुट) लेवल 0 = 0 V और लेवल ISB) की निर्गम (आउटपुट) वोल्टता क्य	
64.65.	(A) (C) एक 1 = 青? (A) (C)	पुनरावर्तनीयता अनिश्चितता 5-बिट लैंडर के लिए यदि लेवल के +10 V है तब सबसे महत्वपूर्ण द्विती 0.625 V 2.5 V	(B) (D) लिए निवेश य बिट (M (B) (D)	विश्वसनीयता यथार्थता रा (इनपुट) लेवल 0 = 0 V और लेवल ISB) की निर्गम (आउटपुट) वोल्टता क्य	ī
	(A) (C) एक 1 = 青? (A) (C) एक	पुनरावर्तनीयता अनिश्चितता 5-बिट लैंडर के लिए यदि लेवल के +10 V है तब सबसे महत्वपूर्ण द्विती 0.625 V 2.5 V	(B) (D) लिए निवेश य बिट (M (B) (D)	विश्वसनीयता यथार्थता रा (इनपुट) लेवल 0 = 0 V और लेवल ISB) की निर्गम (आउटपुट) वोल्टता क्य 1.25 V	ī
	(A) (C) एक 1 = है ? (A) (C) एक निर्धा	पुनरावर्तनीयता अनिश्चितता 5-बिट लैंडर के लिए यदि लेवल के +10 V है तब सबसे महत्वपूर्ण द्विती 0.625 V 2.5 V 5-बिट प्रतिरोधी विभाजक के लिए	(B) (D) लिए निवेश य बिट (M (B) (D) अल्पतम मह	विश्वसनीयता यथार्थता रा (इनपुट) लेवल 0 = 0 V और लेवल ISB) की निर्गम (आउटपुट) वोल्टता क्य 1.25 V	ī
	(A) (C) एक 1 = 青? (A) (C) एक निधां	पुनरावर्तनीयता अनिश्चितता 5-बिट लैंडर के लिए यदि लेवल के +10 V है तब सबसे महत्वपूर्ण द्विती 0.625 V 2.5 V 5-बिट प्रतिरोधी विभाजक के लिए उ	(B) (D) लिए निवेश य बिट (M (B) (D) अल्पतम मह	विश्वसनीयता यथार्थता रा (इनपुट) लेवल 0 = 0 V और लेवल ISB) की निर्गम (आउटपुट) वोल्टता क्य 1.25 V 10 V त्वपूर्ण बिट (LSB) को दिये गये भार क	ī
65.	(A) (C) एक 1 = 青? (A) (C) एक निधा (A) (C)	पुनरावर्तनीयता अनिश्चितता 5-बिट लैंडर के लिए यदि लेवल के +10 V है तब सबसे महत्वपूर्ण द्विती 0.625 V 2.5 V 5-बिट प्रतिरोधी विभाजक के लिए र	(B) (D) लिए निवेश य बिट (M (B) (D) अल्पतम मह	विश्वसनीयता यथार्थता रा (इनपुट) लेवल 0 = 0 V और लेवल ISB) की निर्गम (आउटपुट) वोल्टता क्य 1.25 V 10 V त्वपूर्ण बिट (LSB) को दिये गये भार क	T

- 66. A digital to analog converter can be considered as a:
 - (A) Decoding device

(B) Encoding device


(C) Multiplexer

- (D) Summing amplifier
- 67. A 500 V voltmeter is specified to be accurate with +/- 2%. The limiting error when the instrument is used to measure a voltage of 200 volts is:
 - (A) 2%

(B) 4%

(C) 5%

- (D) 10%
- 68. The following logic circuit will give an output of '1' input ABC are one of the following:

(A) 010

(B) 100

(C) 101

- (D) 110
- 69. The mutiplication of binary number 110111 by 110001 will give a binary number:
 - (A) 101010000111

(B) 100110001010

(C) 110011100011

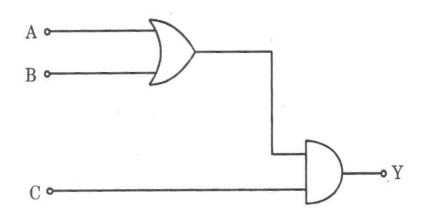
- (D) 111001100011
- 70. In a Field Effect Transistor, a gate voltage V_{GS} = -1 V gives a drain Current I_D = 4.5 mA. If T_{DSS} = 8 mA, the pinch off voltage is :
 - (A) 0 V

(B) -1 V

(C) -2 V

(D) -4 V

- 66. एक डिजिटल से एनालॉग कनवर्टर को किस रूप में निरूपित किया जा सकता है ?
 - (A) डिकोडिंग साधन


(B) कूटलेखन साधन

- (C) बहुसंकेतक
- , (D) समिंग एम्प्लीफायर
- 67. एक 500 V के वोल्टमीटर को +/- 2% की शुद्धता के लिए निर्दिष्ट किया गया है। जब यंत्र 200 वोल्ट की वोल्टता को मापने के लिए प्रयुक्त किया जाता है तब लिमिटिंग त्रुटि कितनी है ?
 - (A) 2%

(B) 4%

(C) 5%

- (D) 10%
- 68. निम्नलिखित लॉजिक परिपथ '1' का निर्गम दर्शाता है, निम्नलिखित में से कौनसा निवेश ABC है ?

(A) 010

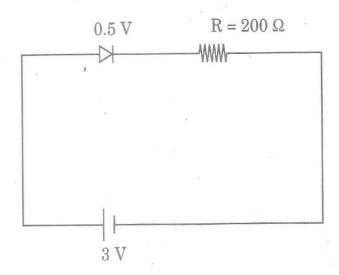
(B) 100

(C) 101

- (D) 110
- 69. बाइनरी (द्विचर) संख्या 110111 को 110001 द्वारा गुणा करने पर यह कौनसी बाइनरी संख्या देगा ?
 - (A) 101010000111

(B) 100110001010

(C) 110011100011


- (D) 111001100011
- 70. एक फील्ड इफेक्ट ट्रांजिस्टर में गेट वोल्टता $V_{GS} = -1~V$ एक ड्रेन धारा $I_D = 4.5~mA$ देता है। यदि $T_{DSS} = 8~mA$ है, तब पिंच ऑफ वोल्टता कितनी है ?
 - (A) 0 V

(B) -1 V

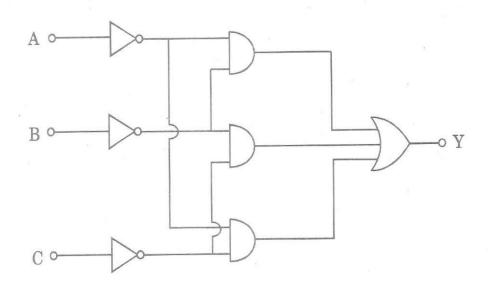
(C) -2 V

(D) -4 V

71. The value of current in the following circuit is:

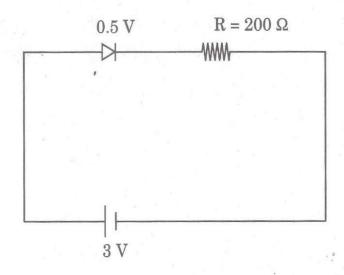
(A) 12.5 mA

(B) 17.0 mA


(C) 66.6 mA

- (D) 57.1 mA
- 72. The Boolean expression $Y = \overline{A}\overline{B}\overline{C} + \overline{A}B\overline{C} + A\overline{B}\overline{C} + AB\overline{C}$ after simplification yields to :
 - (A) <u>A</u>

(B) B.


(C) ABC

- (D) <u>C</u>
- 73. The output (Y) of following logic circuit:

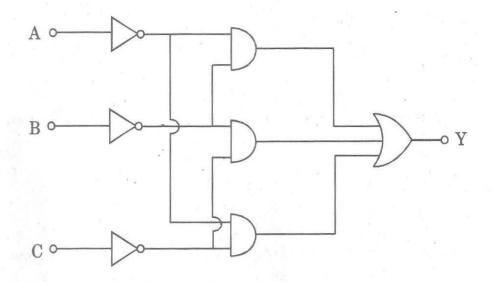
- (A) $Y = \overline{A}\overline{B} + \overline{B}\overline{C} + \overline{A}\overline{C}$
- (B) $Y = \overline{A}B + BC + \overline{A}\overline{C}$
- (C) $Y = ABC + \overline{B}\overline{C} + \overline{A}\overline{C}$
- (D) Y = AB + BC + ABC

71. निम्नलिखित परिपथ में धारा का मान क्या है ?

(A) 12.5 mA

(B) 17.0 mA

(C) 66.6 mA


- (D) 57.1 mA
- 72. बूलियन अभिव्यक्ति $Y = \bar{A}\bar{B}\bar{C} + \bar{A}\bar{B}\bar{C} + A\bar{B}\bar{C} + A\bar{B}\bar{C}$ सरलीकरण के बाद कौनसा उत्पा बनता है ?
 - (A) \bar{A}

(B) B

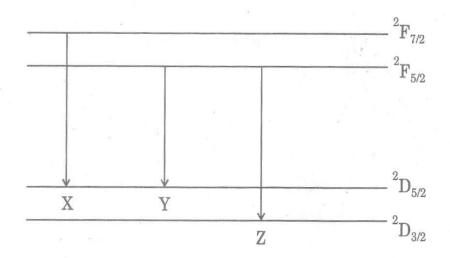
(C) ABC

(D) <u>C</u>

73. निम्नांकित लॉजिक परिपथ का निर्गम (Y) क्या है :

- (A) $Y = \overline{A}\overline{B} + \overline{B}\overline{C} + \overline{A}\overline{C}$
- (B) $Y = \overline{A}B + BC + \overline{A}\overline{C}$
- (C) $Y = ABC + \overline{B}\overline{C} + \overline{A}\overline{C}$
- (D) Y = AB + BC + ABC

74.	A radioactive sample gave the following counts:					
		$N_G = 1000$ for $t_G = 2$ min, as	nd N _E	$t_{\rm B} = 500 \text{ for } t_{\rm B} = 10 \text{ min},$		
	whe	re G means Gross and B stands	for b	packground. The net counting rate		
	and	its standard error is:				
	(A)	450 ± 23	(B)	450 ± 21		
	(C)	450 ± 16	(D)	450 ± 12		
75.	The	rotational constant for ${}^{1}\mathrm{H}^{35}\mathrm{Cl}$ is	s 10.6	cm^{-1} . The rotational constants for		
	$^{1}D^{38}$	$^{5}\mathrm{Cl}$ and $^{2}\mathrm{D}^{35}\mathrm{Cl}$ are (in cm $^{-1}$, a	pprox	imately):		
٠.	(A)	10.6 and 5.3	(B)	5.3 and 10.6		
	(C)	10.6 and 10.6	(D)	10.6 and 21.2		
76.	The	rotational spectral lines of ¹ H	$\mathrm{I}^{127}\mathrm{I}$	are separated by a wavenumber		
$d~{ m cm^{-1}}$. The first spectral line in the rotational spectra of ${ m ^2D^{127}I}$ molecule						
	will	appear at:				
	(A)	$d/2 \text{ cm}^{-1}$	(B)	$d \mathrm{cm}^{-1}$		
	(C)	$2d \text{ cm}^{-1}$	(D)	$4d~\mathrm{cm}^{-1}$		
77.	The	magnetic moment of an atom	in the	e state ³ P ₀ is:		
	(A)	1	(B)	0		
	(C)	3	(D)	6		
78.	The	ground state energy of unpaire	d elec	tron in the sodium atom $(Z = 11)$		
	is:					
	(A)	-0.86 meV	(B)	-1.50 keV		
	(C)	-1.64 keV	(D)	-1.64 eV		
79.	An a	atom is placed in a magnetic field	d 2T a	nd suitably excited. How far apart		
	are	the Zeeman components of 650	nm s	spectral line of this element?		
	(A)	3.9421 nm	(B)	0.1576 nm		
	(C)	0.0394 nm	(D)	0.0197 nm		
T.B.C	.:11/	18/SET—II 38				


74.	एक रेडियोधमी निम्नलिखित गण-	नाये देता है :		
	t_{G} = 2 min के लिए 1	$N_{\rm G} = 1000$		
	$t_{\rm B}$ = 10 min के लिए	$N_B' = 500$		
	जहाँ G का अर्थ ग्रॉस (सकल)	और B का अर्थ बैक	ग्राउंड (पृष्ठाधार) है।	शुद्ध गणना दर और
	मानक त्रुटि कितनी है ?			
	(A) 450 ± 23	(B)	$450~\pm~21$	
,,	(C) 450 ± 16	(D)	$450~\pm~12$	
75.	$^{1}\mathrm{H}^{35}\mathrm{Cl}$ के लिए घूर्णन स्थिरांक	10.6 cm ^{−1} है। ¹ D	³⁵ Cl और ² D ³⁵ Cl के	लिए घूर्णन स्थिरांक
	क्या है (लगभग ${\rm cm}^{-1}$ में) :			
	(A) 10.6 और 5.3	(B)	5.3 और 10.6	
	(C) 10.6 और 10.6	(D)	10.6 और 21.2	
76.	$^{1}\mathrm{H}^{127}\mathrm{I}$ की घूर्णन स्पेक्ट्रल रेखा	यें एक वेब संख्या ($d~{ m cm}^{-1}$ द्वारा पृथक है	हैं। $^2\mathrm{D}^{127}\mathrm{I}$ अणु के
	घूर्णन स्पेक्ट्रा में प्रथम स्पेक्ट्रल	रेखा कहाँ पर दिखा	यी देगी है ?	
	(A) $d/2 \text{ cm}^{-1}$	(B)	$d \text{ cm}^{-1}$	
	(C) $2d \text{ cm}^{-1}$	(D)	$4d \text{ cm}^{-1}$	
77.	$^3\mathrm{P}_0$ अवस्था में एक परमाणु व	n चुम्बकीय आघूर्ण	क्या है ?	
	(A) 1	(B)	0	
	(C) 3	(D)	6	
78.	सोडियम परमाणु (Z = 11) में	गैर-युग्मित इलेक्ट्रॉन	की निम्नतम अवस्था	ऊर्जा क्या है ?
	(A) -0.86 meV	(B)	$-1.50~\mathrm{keV}$	
	(C) -1.64 keV	(D)	-1.64 eV	
79.	एक परमाणु एक चुम्बकीय क्षेत्र	2T में रखा है और	वह उपयुक्त रूप में	उत्तेजित होता है। इस
	तत्व के 650 nm स्पेक्ट्रमी रेख	वा के जीमान घटक	कितनी दूरी पर अलग	ा हैं ?
	(A) 3.9421 nm	(B)	0.1576 nm	
	(C) 0.0394 nm	(D)	0.0197 nm	
m n (T ALLONOTED II	00		D T O

- 80. If the doublet splitting of the 1st excited state $2 p_{3/2} p_{1/2}$ of He-II is 5.84 cm⁻¹ then the corresponding sperration for H is:
 - (A) 0.365 cm^{-1}

(B) 5.840 cm^{-1}

(C) 1.460 cm^{-1}

- (D) 34.105 cm^{-1}
- 81. The ratio of intensity of spectral line arising out of transitions X, Y, Z in the following figure is:

(A) 20:1:14

(B) 9:1:5·

(C) 35:1:27

- (D) 7:5:3
- 82. The L, S and J quantum numbers corresponding to the ground state electronic configuration of Boron (Z = 5) are :
 - (A) 1, 3/2 and 3/2

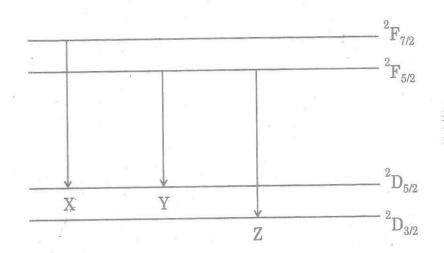
(B) 1, 3/2 and 5/2

(C) 1, 1/2 and 1/2

- (D) 1, 1/2 and 3/2
- 83. The separation between first stokes line and corresponding antistoke's line of the rotational Raman spectra in the term of rotational constant B is:
 - (A) 4B

(B) 6B

(C) 8B


(D) 12B

- 80. यदि He-II की पहली उत्तेजित अवस्था $2^2p_{3/2} ^2p_{1/2}$ का द्विक् विभाजन $5.84~{\rm cm}^{-1}$ है, तब H के लिए उसके अनुरूप स्पीरेशन क्या है ?
 - (A) 0.365 cm^{-1}

(B) 5.840 cm^{-1}

(C) 1.460 cm^{-1}

- (D) 34.105 cm^{-1}
- 81. निम्नलिखित आकृति में X, Y, Z संक्रमणों से उत्पन्न स्पेक्ट्रमी रेखा की तीव्रता का अनुपात क्या है ?

(A) 20:1:14

(B) 9:1:5

(C) 35:1:27

- (D) 7:5:3
- 82. बोरोन (Z = 5) की निम्नतम अवस्था विन्यास के अनुरूप L, S और J क्वांटम संख्यायें कौनसी हैं ?
 - (A) 1, 3/2 और 3/2

(B) 1, 3/2 और 5/2

(C) 1, 1/2 और 1/2

- (D) 1, 1/2 और 3/2
- 83. घूर्णन स्थिरांक B के रूप में घूर्णन रमन स्पेक्टमों की प्रथम स्टोक रेखा और उसके अनुरूप एंटीस्टोक रेखा के बीच पृथक्करण कितना है ?
 - (A) 4B

(B) 6B

(C) 8B

(D) 12B

84.	In He-Ne laser, the laser output is	a res	ult of electronic transition taking
	place in :		
	(A) He only	(B)	Ne only
	(C) Ne first, then in He	(D)	He and glass chamber
85.	The ratio of Einstein spontaneous emi	ssion	coefficient and stimulated emission
	coefficient for laser light having fre	quen	ey 10 ¹⁵ Hz at 300 K is ?
	(A) $1.54 \times 10^{-15} \text{ Jsm}^{-3}$	(B)	$6.17 \times 10^{-15} \text{ Jsm}^{-3}$
	(C) $1.54 \times 10^{-13} \text{ Jsm}^{-3}$	(D)	$6.17 \times 10^{-13} \text{ Jsm}^{-3}$
86.	X-ray with wavelength (λ) equal to 'a	' is re	eflected from (111) crystallographic
	plane of a simple cubic lattice. If the la	constant of the simple cubic lattice	
	is 'a', then the corresponding Bragg	diffr	action angle (measured in radian)
	is:		
	(A) π/4	(B)	$\pi/3$
	(C) π/8	(D)	$\pi/6$
87.	X-ray diffraction pattern from a face	cent	red cubic (fcc) will not contain one
	of the following Bragg diffraction pe	eak:	
	(A) (200)	(B)	(311)
	(C) (111)	(D)	(212)
88.	The frequency of the AC current pr	roduc	ed when a DC voltage of 500 μV
	is applied across the Josephson june	ction	is:
	(A) $4.24 \times 10^{11} \text{ Hz}$	(B)	$2.41 \times 10^{11} \text{ Hz}$
	(C) $3.15 \times 10^{11} \text{ Hz}$	(D)	$2.96 \times 10^{11} \text{ Hz}$
89.	A uniform metallic wire has resistivit	ty of	$1.56 \times 10^{-8} \ \Omega \mathrm{m}$ and atomic density
	of 5×10^{28} m ⁻³ . The relaxation time	of the	electron assuming that each atom
	contributes one conduction electron	is:	
	(A) $3.26 \times 10^{-14} \text{ s}$	(B)	$3.79 \times 10^{-14} \text{ s}$
	(C) $4.38 \times 10^{-14} \text{ s}$	(D)	$2.84 \times 10^{-14} \text{ s}$

			· · · · · · · · · · · · · · · · · · ·
84.	He-Ne लेजर में इलेक्ट्रॉनिक संक्रमण के पा	रिणामस्व	रूप लेजर निर्गम कहाँ होता है ?
	(A) केवल He	(B)	केवल Ne
	(C) पहले Ne और तब He में	(D)	He और कांच कक्ष
85.	$300~{ m K}$ पर $10^{15}~{ m Hz}$ आवृत्ति वाले लेजर प्रव	काश के	लिए आइन्स्टीन स्वतः उत्सर्जन गुणांक और
	प्रेरित उत्सर्जन गुणांक का अनुपात क्या है ?)	
	(A) $1.54 \times 10^{-15} \text{ Jsm}^{-3}$	(B)	$6.17 \times 10^{-15} \text{ Jsm}^{-3}$
	(C) $1.54 \times 10^{-13} \text{ Jsm}^{-3}$	(D)	$6.17 \times 10^{-13} \text{ Jsm}^{-3}$
86.	'a' के बराबर तरंगदैर्घ्य (त्र) वाली एक X-किरण	को एक	साधारण घन लैटिस (जालक) के क्रिस्टेलो-
	ग्राफिक (111) तल से परावर्तित किया जाता	है। यदि	सामान्य घन लैटिस का लैटिस स्थिरांक 'a',
	है तब उसके अनुरूप ब्रैग विवर्तन कोण (री	डियन मे	मापा गया) कैसा है ?
3 × 1	(A) π/4	(B)	$\pi/3$
L	(C) π/8	(D)	$\pi/6$
87.	एक मुख केन्द्रित घन (fcc) से X-किरण विवत	र्तन पैटर्न	में निम्नलिखित में से कौन एक ब्रैग विवर्तन
	शिखर नहीं होगा ?		
	(A) (200)	(B)	(311)
	(C) (111)	(D)	(212)
88.	जब एक $500~\mu V$ की DC वोल्टता को उ	जोसफ्सन	जंक्शन पर सभी जगह प्रयुक्त किया जाय
	तब उत्पन्न AC धारा की आवृत्ति कितनी है	?	
	(A) $4.24 \times 10^{11} \text{ Hz}$	(B)	$2.41 \times 10^{11} \text{ Hz}$
	(C) $3.15 \times 10^{11} \text{ Hz}$	(D)	$2.96 \times 10^{11} \text{ Hz}$
89.	एक एकसमान धातु के तार की प्रतिरोधव	कता 1.	$56 imes 10^{-8} \; \Omega \mathrm{m}$ है और परमाणु घनत्व
	$5 \times 10^{28} \; \mathrm{m}^{-3}$ है। यदि यह मान लें कि प्र		
	है तो इलेक्ट्रॉन का विश्राम काल क्या है		
	(A) $3.26 \times 10^{-14} \text{ s}$	(B)	$3.79 \times 10^{-14} \text{ s}$
	(C) $4.38 \times 10^{-14} \text{ s}$	(D)	$2.84 \times 10^{-14} \text{ s}$
m D	C . 11/10/CET II A	13	P.T.O
T.B.	C.: 11/18/SET—II 4		

90.	A cry	vstal plane intercepts the crystal	axes	at $0.5~a,~b$ and is parallel to the		
	c-axi	s. The Miller indices of the dire	ction	perpendicular to this plane is:		
	(A)	[120]	(B)	[210]		
	(C)	[012]	(D)	[102]		
91.	The	crystal system showing the leas	t syn	nmetry is:		
	(A)	Tetragonal	(B)	Orthorhombic		
	(C)	Monoclinic	(D)	Triclinic		
92.	The	Debye Temperature of iron (Fe)	is 3	60 K. The Debye frequency is:		
A.	(A)	$7.5 \times 10^{12} \text{ Hz}$	(B)	$8.5 \times 10^{12} \text{ Hz}$		
	(C)	$7.5 \times 10^{10} \text{ Hz}$	(D)	$8.5 \times 10^{10} \text{ Hz}$		
93.	In semi-empirical mass formula as per liquid drop model, the Coulomb energy					
	term depends upon mass number (A) as:					
	(A)	A^{-1}	(B)	A^{-2} $A^{-2/3}$		
	(C)	$A^{-1/3}$	(D)	$A^{-2/3}$		
94.	. The total occupancy of N = 2 harmonic oscillator shell in single partic					
	mod	el is:				
	(A)	6	(B)	12		
	(C)	18	(D)	24		
95.	The magnitude of the voltage pulse produced from each individual interaction					
	is independent of the deposited energy in :					
	(A)	Ionization chamber	(B)	Geiger Mueller detector		
	(C)	HPGe detector	(D)	NaI(Tl) detector		
Г.В.С	C.: 11/	18/SET—II 44				

90.	एक क्रिस्टल समतल क्रिस्टल अक्षों को $0.5\ a,$	७ पर अ	नवरुद्ध करता है और यह c-अक्ष के समानान्तर
	है। इस समतल की अनुलम्ब दिशा से मिलर	घातांव	क कौनसा है ?
	(A) [120]	(B)	[210]
	(C) [012]	(D)	[102]
91.	अल्पतम सममिति दर्शाने वाला क्रिस्टल प्रक्रम	कौनस	ग है ?
	(A) चतुष्कोण	(B)	विषमलंबाक्ष (ऑथीरोम्बिक)
	(C) एकनताक्ष (मोनोक्लिनिक)	(D)	त्रिनताक्ष (ट्राइक्लिनिक)
92.	लौह (Fe) का डेबाई तापमान 360 K है। डे	वाई अ	गवृत्ति कितनी है ?
3 (A)	(A) $7.5 \times 10^{12} \text{ Hz}$	(B)	$8.5 \times 10^{12} \text{ Hz}$
	(C) $7.5 \times 10^{10} \text{ Hz}$	(D)	$8.5 \times 10^{10} \text{ Hz}$
93.	द्रव बूँद मॉडल के अनुसार अर्द्ध प्रयोगसिद्ध द्र	व्यमान	सूत्र में, कूलॉम ऊर्जा संबंध द्रव्यमान संख्या
	(A) पर किस रूप में निर्भर होते हैं ?		
	(A) A^{-1}	(B)	A^{-2}
	(C) $A^{-1/3}$	(D)	$A^{-2/3}$
94.	N=2 हार्मोनिक दोलक शैल की एक कण	। शैल	मॉडल में कुल कितना आधिपत्य है ?
	(A) 6	(B)	12
	(C) 18	(D)	24
95.	प्रत्येक व्यष्टि परस्पर क्रिया से उत्पन्न वोल्टता	स्पंद	का परिमाण किसमें एकत्रित ऊर्जा से स्वतंत्र
	होता है ?		
	(A) आयनीकरण कक्ष	(B)	गीगर-मुलर संसूचक
	(C) HPGe संसूचक	(D)	NaI(Tl) संसूचक
T.B.C	.: 11/18/SET—II 45		P.T.O.

96.	The mass of $^{22}_{11}$ Na radioactive source ($T_{\frac{1}{2}}$ = 2.6 years) with activity 2 μ Ci
	is:
	(A) 0.32 μg (B) 0.42 μg
	(C) 0.32 ng (D) 0.42 ng
97.	In the decay of $^{137}_{55}$ Cs radioactive source ($T_{\frac{1}{2}} = 31.1$ years) (Q-decay = 1176
	keV), the two beta-particles are emitted with end-point energy of 515 keV
	(94.4%) and 1176 keV (5.6%), respectively. The excited state of $^{137}_{56} \mathrm{Ba}$ daughter
	nucleus is decay via M4 gamma-ray transitions. The type of 515 keV beta-
	transition is:
	(A) 2nd-forbidden Fermi and Gamow-Teller
	(B) 1st-forbidden Gamow-Teller
	(C) 1st-forbidden Fermi
	(D) 2nd-forbidden Gamow-Teller
98.	Consider the reaction:
	$\Omega^- \to \Xi^0 + \pi^-$ Which of the following statements is false ?
	(A) charge is conserved (B) baryon number is conserved
	(C) strangeness is conserved (D) parity is conserved
99.	Which of the following is not conserved for electromagnetic interaction among
	elementary particles?
	(A) Third component of isospin (B) Strangeness
	(C) Parity (D) Isospin
100.	The quarks content of Δ^+ is :
	(A) udd (B) ddd
	(C) uud (D) uuu

96.	$2~\mu\mathrm{C}i$ की सिक्रयता वाले $^{22}_{11}\mathrm{Na}$ रेडिय	ाधर्मी स्रोत ($\mathrm{T}_{1\!/\!_{2}}=2.6$ वर्ष) का द्रव्यमान व	या है ?
	$(A) 0.32 \ \mu g$	(B) 0.42 μg	
	(C) 0.32 ng	(D) 0.42 ng	
97.	$^{137}_{55}\mathrm{Cs}$ रेडियोधर्मी स्रोत ($\mathrm{T_{1/2}}=31.1$ व	र्ज) (Q-डिके = 1176 keV), के क्षय में क्रम	श्यः 515
	keV (94.4%) और 1176 keV (5.6%) की अंत:बिन्दु ऊर्जा वाले दो बीटा कण उत्स	ार्जित होते
	हैं। $^{137}_{56}{ m Ba}$ पुत्री नाभिक की उत्तेजित 3	वस्था M4 गामा किरण संक्रमण से क्षयमान	होती है।
	515 keV बीटा संक्रमण का प्रकार कौ	ासा है ?	
	(A) द्वितीय-निषिद्ध फर्मी और गमाऊ-त	त्रर	
	(B) प्रथम-निषिद्ध गमाऊ-टेलर		
	(C) प्रथम-निषिद्ध फर्मी		
	(D) द्वितीय निषिद्ध गमाऊ-टेलर		
98.	निम्नलिखित अभिक्रिया पर विचार कीजि		
	Ω	$\Rightarrow \Xi^0 + \pi^-$	
	निम्नलिखित में से कौनसा कथन असत्य	है ?	
	(A) परिवर्तन संरक्षित है	(B) बैरियॉन संख्या संरक्षित है	
	(C) विचित्रता संरक्षित है	(D) समानता संरक्षित है	
99.	प्राथमिक कणों के बीच वैद्युतचुम्बकीय	रस्पर क्रिया के लिए निम्नलिखित में से कौन	न संरक्षित
	नहीं है ?		
	(A) समभारिक प्रचक्रण (आइसोस्पिन)	का तीसरा घटक	
	(B) विचित्रता		
	(C) समानता		
	(D) समभारिक प्रचक्रण (आइसोस्पिन)		
100.	Δ^+ का क्वार्क कंटेंट कौनसा है ?		
	(A) udd	(B) ddd	
	(C) uud	(D) uuu	
T.B.C	.: 11/18/SET—II	47	P.T.O.